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Flow division at a channel crossing with subcritical
or supercritical flow

C. W. Li∗,† and C. Zeng

Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong

SUMMARY

The passage of an extreme storm over an urban area can lead to the flooding of the streets if the
rainfall intensity exceeds the design value and/or the drainage system is not functional. The study of
flow distribution in street networks thus is important for the design of flood protection measures. The
flow distribution is affected by the junction flow characteristics, inflow discharges and downstream water
depths. To reduce the degree of empiricism, a 3D Reynolds-averaged Navier–Stokes equations model
has been implemented in this study to investigate the flow phenomena in a cross junction. The Spalart–
Allmaras model is used for turbulence closure. The numerical model utilizes the split-operator approach,
in which the advection, diffusion and pressure propagations are solved separately. The numerical model
predicts accurately the flow distribution in a channel crossing under different subcritical flow conditions,
for which experimental data are available. Recirculation zones exist at both the downstream channels and
the associated contraction coefficient varies linearly with the ratio of the discharges at the two inlets.
Secondary currents are apparent for the flow with strong asymmetric outlet conditions. Under supercritical
inflow conditions, the model reproduces the hydraulic jump and hydraulic drop phenomena and predicts
accurately the relationship between the input power ratio and the outflow discharge ratio of the street
crossing. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In an urban area subjected to the passage of a severe storm, the rainfall will be intensive and the
resulting surface runoffs on the streets will have large flow widths. If the rainfall depth exceeds
the design value and/or the drainage system is accidentally not functional, flooding in the streets
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will occur. The streets will become open channels and the study of flow distribution in the street
network thus is important for the design of additional flood protection measures. In addition, in
rural areas a network of open channels is normally used for drainage and water transport. An
understanding of the flow characteristics at channel junctions is equally important for the design
of an open channel network.

Experimental, analytical and numerical methods have been developed in the past to investigate
flow in channel junctions. Taylor [1] reported the pioneering work on 1D analytical modelling of
open channel junction flows. Law and Reynolds [2] assumed a proper hydraulic pressure force on the
depth-averaged stagnation dividing stream-surface, and used the momentum equation and energy
equation to describe the 1D flow characteristics. Best and Reid [3] investigated experimentally the
shape of the separation zone at channel junctions. Neary and Odgaard [4] investigated the effect
of bed roughness on the 3D structure of a dividing flow and pointed out the similarity between the
studied flow and the bend flow. Hsu et al. [5] developed a one-dimensional model to predict the
water depth upstream of the junction of a subcritical open channel flow and estimated the maximum
flow constriction in the branch channel. Hsu et al. [6] proposed a depth-discharge relationship and
an energy-loss coefficient for a subcritical, equal-width, open channel T -junction dividing flow.

The above works provide physical insight of the flow phenomenon and aid in the engineering
design. For the analytical or numerical models proposed, additional assumptions are introduced
and thus the models are not general. In the simulation of the complicated flows in open channel
junctions, a 3D numerical model is required. Neary et al. [7] developed and validated a 3D k–�
model to study dividing flow in a channel junction. Huang et al. [8] developed and validated a 3D k–
ε model to study combining flow in a channel junction. Recently, Ramamurthy et al. [9] developed
a 3D k–� model with free surface tracking capability to study dividing open-channel flows.

Although extensive studies have been done on open channel junction flows, nearly all of them
concern with junctions connecting three channels in the form of a T shape or a Y shape. In
street networks the most common type of junction is a cross, with inflow from one or two of
the streets. Relative seldom studies have been carried out for flows in channel crossings. Nania
et al. [10] studied experimentally the supercritical dividing flow in steep street crossings. An
empirical equation has been derived for the relationship between the inflow power ratio and the
flow distribution. Riviere et al. [11] performed experiments and 1D numerical simulation of the
subcritical flow in a channel crossing. The inadequacy of the 1D simulation of the complicated
3D flow at the crossing has been highlighted.

In the present study a fully 3D Reynolds-averaged Navier–Stokes equations (RANS) model [12]
is extended and implemented to simulate the flow in channel crossings. The dependence of the
flow distribution on the inlet and outlet conditions will be investigated. Flow details including the
recirculation zones and secondary currents will also be studied.

2. GOVERNING EQUATIONS

The RANS equations describe the conservation of mass and momentum of fluid, and are written
as follows:

Continuity equation:

�ui
�xi

=0, i=1,2,3 (1)
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Momentum equation:
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+u j
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�x j
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�x j
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�xi
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where xi (= x, y, z) are the coordinates in longitudinal, transverse and vertical directions, respec-
tively, ui (=u,v,w) are the time-averaged velocity components in x , y and z directions, respec-
tively, t is the time; � is the density of fluid �m is the molecular viscosity, �i j −�u′

i u
′
j is the

Reynolds stresses, gi (=0,0,−9.81m/s2) are the components of the gravitational acceleration.
The Reynolds stresses are represented by the eddy viscosity model:
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where k= 1
2u

′
i u

′
i is the turbulent kinetic energy that can be absorbed into the pressure gradient

term, �t =eddy viscosity. In the present study the eddy viscosity �t is specified by the Spalart–
Allmaras turbulence model, which involves the solution of a new eddy viscosity variable � [13].
The version of the model used is for near-wall region and extended from high Reynolds number
to finite Reynolds number, which is most relevant to the present problem.
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S� =√
� j� j is the magnitude of the vorticity, �=0.41, �= 2

3 , cb1=0.1355, cb2=0.622, c�1=7.1,

cw1= cb1
�2

+ 1+cb2
�

cw2=0.3, cw3=2, d= length scale.
The above equation describes the convective transport, together with the production, diffusion

and destruction of the eddy viscosity. The destruction term (the last term of Equation (6)) represents
the dissipation of the turbulent kinetic energy in the near-wall region, where d is equal to the wall
distance. This turbulence model is a one-equation model which is simpler than the commonly used
k–ε or k–� model and it has been successfully applied in the modelling of certain free-shear flow,
wall-bound flow and separated flow problems (e.g. [13, 14]).
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3. NUMERICAL METHOD

In open channel flow the free surface elevation is unknown and the depth correspondingly varies
with time. This causes certain difficulty in the discretization of the domain along the vertical
direction. To solve this problem, one method is to use a �-coordinate transformation. The details
of the modified governing equations are described in Lin and Li [12] and are briefly described
here. Assuming that the free surface is a single function of the horizontal plane, a slightly modified
�-coordinate from Blumberg and Mellor [15] is introduced as follows:

�= t, 
1= x1= x, 
2= x2= y, 
3=�= x3+h

H
= z+h

H
(5)

where H =�+h is the total depth, � is the surface elevation and h is the static water depth. �,

(i=1,2,3) are the temporal and spatial coordinates in the new system. The above coordinate
transformation basically maps the varying vertical coordinate in the physical domain to a uniform
transformed space where � spans from 0 to 1. The governing equations are then transformed
accordingly and are given below.
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In particular,
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A split operator method is used in the solution of the governing equations. At each time interval,
the momentum equations are split into three steps: advection, diffusion and pressure propagation.
The momentum equations can be written in the following forms:

�ui
��

= A(ui )+D(ui )+P(p) (13)
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where A denotes the advection operators, D denotes the diffusion operators and P denotes the
pressure gradient and body force operators.

In the Advection step, the equations to be solved are as follows:

(ui )n+1/3−(ui )n

��
= A(ui )
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(14)

where �� is the time step size, and the superscript n+ 1
3 represents the first intermediate step of the

three steps. Similar notations are used in the following equations. The method of characteristics is
used to solve the above equation. Assuming that the spatial variation of a function (e.g. velocity
component) can be decomposed into a series of Fourier wave components, the schemes in this
class of method produce accurate solution for the advection of waves. In particular the phase
accuracy is high and the amplitude damping is quite small. Under uniform grid the combination of
the quadratic backwards characteristics method and the Lax–Wendroff method gives the Minimax
characteristics method [16]. The implementation of this method on non-uniform grids has been
done by Lin and Li [12] and the method is adopted here. In the presence of sharp velocity gradient
numerical oscillations may occur in the solution; thus, a slope limiter is imposed to eliminate the
numerical oscillation problem. Details can be found in Yu and Li [17].

In the diffusion step, the following equation is to be solved:
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In the pressure propagation step, the equation to be solved is as follows:

(ui )n+1−(ui )n+2/3
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The central difference scheme in space is used to discretize the above two equations. For continuity
requirement, the last equation is substituted into the continuity equation to give the Poisson
equation.

A stable and robust conjugate gradient method CGSTAB is used to solve the above equation. The
classical Gauss–Seidel method has also been implemented to solve this equation. Computations
show that the CGSTAB method significantly shortens the computational time as compared with
the use of Gauss–Seidel method under the same convergence criterion. Once the correct pressure
information is found at time step n+1, it is substituted into Equation (16) to find the velocity
information at the new time step so that the continuity Equation (6) is satisfied at time step n+1.

The equation for the eddy viscosity is split into two steps: advection and diffusion with source.
The same procedures for the solution of the momentum equation are used in the solution of these
equations, i.e. in the advection step the upwind scheme with limiter is used, and in the diffusion
step the central difference scheme is used. A more complete description of the details of the
numerical method can be found in [12].
3.1. Boundary conditions

Various types of boundary condition have been implemented in the model. And the boundary
conditions are applied at each split step. The free surface is an interface of water and air, at which
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both the dynamic and kinematic conditions should be satisfied. Neglecting the surface tension and
the wind stress on the free surface, the dynamic condition can be satisfied by specifying zero
pressure and zero gradients of all the velocity components. Assuming no overturning occurs at the
water surface, the kinematic condition can be given as follows:

��

�t
=u3−u1

��

�x1
−u2

��

�x2
(17)

where � is the free surface elevation. The equation is an advection equation which can be solved
by the method of characteristics. Based on the no-slip boundary condition, particle velocities in
all directions need to be zero on a bottom or solid wall. This treatment, however, is accurate only
when fairly fine meshes are used to resolve the bottom boundary layer. Alternatively, the free-slip
boundary condition can be used to estimate velocity gradients at the first interior node, which will
be subsequently used in the advection calculation. Meanwhile, the log-law wall function is used to
calculate the wall shear stress that will be used in the diffusion step. The latter method can produce
accurate results when relatively coarse meshes are used. At an inflow boundary, the inflow rate with
a predetermined velocity distribution is specified and the gradient of the water surface elevation is
assumed to be zero. At an outflow boundary, two types of boundary condition can be used. For the
first type of boundary condition the water surface elevation is specified and the velocity gradients
are assumed to be zero. For the second type of boundary condition, a stage-discharge relationship
is introduced. While the velocity gradients are still assumed to be zero, the downstream depth of
each channel is determined by the basic head-discharge equation for a rectangular sharp-crested
weir (Equation 23) according to the computed discharge at the outlet at each time step.

Q=Cw
2
3

√
2gbH3/2 (18)

where H is the weir head, b is the width of channel (also weir) and Cw is the effective discharge
coefficient defined as follow:

Cw =0.611+0.075(H/Pw) (19)

where Pw is the height of weir, and the water depth=H+Pw.

3.2. Shock capturing

A hydraulic jump occurs at the transition from supercritical to subcritical flow. Across the jump
the water surface rises rapidly, surface rollers are formed, air entrainment occurs and energy is
dissipated. The numerical modelling of hydraulic jump is difficult because of these complicated
processes. Physically the momentum equations do not include the terms for air entrainment and
surface wave rolling or breaking. Numerically the steep gradient of the surface elevation profile at
the jump will cause computational oscillations and/or numerical instability for most schemes. To
solve the problem numerical damping, implicit or explicit, is generally required. Implicit numerical
damping can be achieved by using non-oscillatory schemes, such as the TVD schemes (e.g. [18])
or the first-order upwind scheme with slope limiters [19]. These schemes are first-order accurate
near the jump and second-order accurate elsewhere. Explicit damping is generally achieved by
adding an artificial viscosity (e.g. [20, 21]). In 3D models the use of VOF method will smear
the sharp surface elevation profile over several grid cells [22], which is an effective method to
introduce numerical damping. In the present model the surface elevation profile is sharply defined
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by solving the equation for the kinematic condition (Equation 21). Thus, an artificial viscosity is
added to model the physical processes of surface wave rolling or breaking and air entrainment.
It should be noted that this approach is only done for the simulation of hydraulic jump and the
amount of artificial viscosity added is the smallest to maintain a stationary jump as observed in
experiments.

The artificial viscosity should only be effective in regions with a steep slope and small in other
regions. Similar to Krüger and Rutschmann [23], the artificial viscosity �a is expressed as

�a=�g

√(
��

�x1

)
+
(

��

�x2

)2

(20)

where �g is the constant global diffusion coefficient. �a is added to � in the diffusion step. At the
water surface, the energy dissipation by wave breaking and air entrainment is modelled by the
addition of a diffusion process Equation (17) is then modified to
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�t
=u3−u1
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−u2
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+ �

�x1

(
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(21)

This approach is found effective in the subsequent computation of hydraulic jump. The major
limitation is that mass conservation is not guaranteed in the jump region.

4. FLOW IN A CHANNEL T -JUNCTION

Owing to the lack of detail flow measurements of flows in cross junctions, the numerical model is
first validated through the simulation of T -junction flows. Detail measurements of vertical velocity
profiles and water surface profiles are reported by Ramamurthy et al. [9]. The channel consists
of a 6.198m long main channel and a 2.794m long side channel. The main channel and the
branch channel are 0.305m high and 0.610m wide. The branch channel is positioned at a distance
of 2.794m from the channel entrance. The channel bed is horizontal everywhere. The upstream
discharge Qu is 0.046m3/s, and the discharge of the branch channel Qb is 0.038m3/s. Hence, the
discharge ratio Qb/Qu is 0.83.

The simulation domain is carefully chosen for proper setting up of the inflow and outflow
boundaries. To ensure the inlet flow is fully developed, the length of the main channel upstream of
the junction is extended to 4.27m (=7W ). However, the length of the main channel downstream
of the junction and the length of the branch channel are shortened to 2.44m (=4W) since the main
interest is to study the junction flow characteristics. In the simulation non-uniform grids are used,
with the finest grid at the wall region and in the junction region. In the physical experiments the
downstream water depth of the branch channel Yb is not reported. The trial and error approach thus
is used to specify Yb in the numerical simulation such that the resulting discharge ratio matches that
of the corresponding physical experiments. The computed results are compared with the available
experimental data at selected cross section as shown in Figure 1. The overall agreement between
the computed results and the experimental data is good (Figures 2–4). The average difference
between the measured data and computed results is within 5%, which should be acceptable for
engineering applications. The largest discrepancy occurs at the recirculation zone. This is expected
as the turbulence is assumed isotropic in one-equation turbulence models (e.g. the present Spalart–
Allmaras model) or two-equation models (e.g. k–ε or k–� models), and the assumption is not valid
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Figure 1. Cross-sections of the open channel T -junction for results comparison.
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Figure 2. Vertical variation of U∗ at selected sections in the main channel (solid line—computed,
square—measured, U∗ =u/uc, Z∗ = z/W , uc =(gQu/W )1/3=critical velocity).

for the turbulence in recirculating flow. The matching of the computed velocities u in the main
channel and the corresponding measured velocities is excellent (Figure 2). The model correctly
predicts that the recirculation zone is wider at the top (Figure 3, section E5) and there is a sharp
decrease in the water level in the branch channel (Figure 4). The relative large water level variation
in the flow region is due to the small water depth/width ratios in the channels

5. SUBCRITICAL FLOW IN A CROSS JUNCTION

In flat streets the flow will be subcritical everywhere. The flow in a street crossing is then governed
by the inflow rates at the inlets and the water levels at the outlets. In the numerical simulation the
experiments carried out by Rivière et al. [11] are replicated. The set-up consists of four identical
channels intersected at right angles (Figure 5). Each channel is horizontal and of width 0.3m,
length 2m. The inflow rates vary from 0 to 10 l/s. The outflow rates are controlled by sharp-crested
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rectangular weirs of heights ranged from 30, 40 to 75mm. The outflow rate can be determined by
the stage-discharge relationship for the weir.

In the computational domain the grid size is 0.0075m×0.0075m×0.008375m. The time step
is 0.0015 s. The grids and the time step are sufficiently small to generate grid-independent results.
The computational time is approximately 0.5 CPU s/time step with a grid of approximately 7×104
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Figure 5. Definition sketch of the cross junction.
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Figure 6. Flow distribution under identical outlet conditions.

nodes. In fact, apart from the numerical method used, RAM and CPU requirements of a computer
code depend on many other factors, including the computer programming technique in writing the
code, the output requirement, and the hardware architecture of the computer systems.

Extensive numerical simulations have been carried out for cases with different downstream weir
heights and upstream inflows. The computed discharges are shown in Figures 6 and 7, and compare
favourably with the corresponding experimental measurements [11] for both cases of identical
and asymmetrical outlet weir height conditions. In the Figures Q∗

sy =Qoy/Qix , where Qoy is the
outflow discharge in the y-channel, Qix is the inflow discharge at the x-channel; Q∗

ey =Qiy/Qix ,
where Qiy is the inflow discharge in the y-channel. The results show that for identical downstream
weir heights, the flow distribution is dependent solely on the input flow ratio, independent of
the weir height and the absolute value of the inlet flow rate. For asymmetrical downstream weir
heights, the higher the weir height in the x-channel, the larger the y-outflow rate Qoy results. For
a given inflow discharge ratio, the outflow distribution is dependent more or less linearly with the
difference between the outlet weir heights.

The typical computed flow patterns are shown in Figure 8. They are characterized by the presence
of recirculation zones at the downstream channels due to flow separations at the corners. It is
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Figure 8. Typical flow patterns in channel crossings: (a) symmetric outlet conditions: Q∗
ey =0.8,

px =40mm, py =40mm and (b) asymmetric outlet conditions: Q∗
ey =0.25, px =40mm, py =75mm.

apparent that the size of the recirculation bubble is smaller in the downstream channel with less
flow. The typical surface elevation mappings are shown in Figure 9. The highest water elevation
occurs at the intersection corner of the two downstream channels where the flow interaction is
expected to be the strongest. The lowest water surface elevation occurs at the centre of the largest
recirculation bubble where the pressure should be the lowest. The 3D model also predicts that
secondary currents exist in the downstream channel cross-sections (Figure 10). This is due to
the asymmetric inflow with transverse velocity components at the entrances of the downstream
channels.
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Figure 9. Typical surface elevation mappings in channel crossings: (a) symmetric outlet
conditions: Q∗

ey =0.8, px =40mm, py =40mm and (b) asymmetric outlet conditions:
Q∗

ey =0.25, px =40mm, py =75mm.

Figure 10. Secondary currents in channel sections: (a) X∗ =1 and (b) Y ∗ =−1.

To describe the size of the recirculation zones the contraction coefficients Ccx and Ccy are
defined as follows.

Ccx = Wx −Wsx

Wx
, Ccy = Wy−Wsy

Wy
(22)
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Figure 11. Contraction coefficients under identical outlet conditions.
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Figure 12. Contraction coefficients under asymmetric outlet conditions.

where Wx =Wy =W channel width, Wsx is the maximum width of the recirculation bubble in
the x-channel and Wsy is the maximum width of the recirculation bubble in the y-channel. The
outermost streamline inside the recirculation bubble is taken to be the boundary of the separation
zone and the farthest point of that streamline from the wall is taken as the maximum width of
the recirculation bubble. In Figures 11 and 12 we have plotted a set of curves for the contraction
coefficients in both the x-channel and the y-channel under different exit weir heights (px and py),
and different inlet flow rates (Qix and iy). Figure 11 shows that the contraction coefficient is
dependent on the input flow ratio, independent of the weir height and the absolute value of the
inlet flow rate under the identical outlet conditions. As can be seen from those figures, a higher
value of the ratio of the inlet flow rates Q∗

ey(=Qiy/Qix ) leads to a larger recirculation zone in
the x-channel and smaller recirculation zone in the y-channel. The Ccx for the case of strong
downstream asymmetry (px =75mm, py =30mm) is an exception because there is more than one
recirculation bubble formed at the downstream end of the x-channel. These figures also show that a
larger exit weir height always leads to a smaller recirculation bubble in both the x- and y-channels.

The streamline tracing backing from the intersection corner of the two downstream channels and
with the starting point in the upstream section of the x-channel is called the dividing streamline,
which divides the inlet flow of the x-channel into two parts flowing into two different downstream
channels. The width of the part of flow entering the downstream y-channel is denoted by Wud . The
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Figure 13. Width ratio Wud/W of dividing streamline for Z∗(= z/W ).

Figure 14. Variation of width ratio Wud/W of dividing streamline with Q∗
ey .

computed results for the case px =40mm, py =75mm and Qex =6l/s show that Wud varies with
the vertical z-coordinate (Figure 13); hence, the discharge ratio is different at different level. The
width ratio (Wud/W ) of the dividing streamline increases as Q∗

ey increases. The larger the Q∗
ey ,

the more water will flow into the downstream y-channel. Figure 14 shows that the depth-averaged
width ratio of the dividing streamline increases linearly with Q∗

ey for both identical and different
outlet conditions.

6. SUPERCRITICAL FLOW AT THE TWO INLETS

In steep streets the flows will be supercritical. The flows on the streets will collide at the street
crossing and a significant energy loss will be resulted. Hydraulic jumps will occur at or adjacent
to the street crossing. If the downstream channels are of sufficient steepness, the flows will return
to supercritical state rapidly and a hydraulic drop will be formed. The numerical model is then
used to simulate the flow in a channel crossing with the same dimensions as that used in Section 5.
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Table I. Parameters for supercritical flow in a channel crossing.

Case Qx (m3/s) hx (m) Frx Qy(m3/s) hy(m) Fry

1 0.025 0.05 2.38 0.024 0.05 2.28
2 0.025 0.05 2.38 0.006 0.025 1.64
3 0.025 0.05 2.38 0.012 0.025 3.23
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Figure 15. Water depth profiles along the x-channel of the channel crossing.

The slopes of the channels are steep and equal to 0.04. The bottom of the crossing is flat. Three
cases with parameters shown in Table I are simulated, in the table Fr is the Froude number. In
these cases the upstream Froude numbers are relatively small (Fr∼1.6−3.2) and thus the jumps
are weak. Numerically the simulation of weak jump is comparatively easy.

For supercritical flow the downstream disturbance cannot travel upstream. The inflow depth and
velocity will affect the flow. The inflow power thus is an appropriate parameter to describe the flow
behaviour. For the boundary conditions at the inflow boundaries both the water depth and all the
velocity components are specified. At the outlet boundaries the zero gradient condition is specified
for both the water depth and all the velocity components. The channel crossing is discretized by
variable grids, with the finest grid at the crossing or close to the solid boundaries, and the coarsest
grid at the inlet and outlet where flow is more uniform.

The water depth profiles along the centerlines of the two channels are shown in Figures 15
and 16. Hydraulic jumps formed in the channels with positions dependent on the inflow powers
which are defined by

Wx =�gQx

(
zx +hx + v2x

2g

)
, Wy =�gQy

(
zy+hy+

v2y

2g

)
(23)

For case 1, the input powers of both channels are close and the two hydraulic jumps occur
upstream of the crossing. The flow in the crossing becomes subcritical. Hydraulic drops then
occur downstream the crossing and the flow in each outlet channel returns to supercritical. For
cases 2 and 3, the input power of one channel is significant higher than that of the other channel.
The jump in the channel with higher power moves towards the crossing and becomes an oblique
jump, while the jump in the channel with lower power moves backwards to the inlet. The flow
distribution is also affected by the input power ratio Wx/(Wx +Wy). The dependency of the flow
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Figure 16. Water depth profiles along the y-channel of the channel crossing.
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Figure 17. Dependence of outflow discharge ratio on the input power ratio.

ratio Qxo/(Qxo+Qyo) with the input power ratio is shown in Figure 17. Compared with the
measured results due to [10], the present model gives a good prediction.

7. SUPERCRITICAL FLOW AT ONE INLET

The model can be used to study other complicated flow regimes, such as mixed types of flow,
with supercritical flow at one inlet channel and subcritical flow elsewhere. Under this situation
the flow distribution will be dependent on the discharges at the inlets, the water depths at the
outlets, as well as the input power of the supercritical flow. To investigate this phenomenon
the channel crossing used in Section 5 is modified such that the channel slopes become 0.001,
except the slope of the inlet y-channel which is 0.125. The flow parameters are: Qx =0.05m3/s,
hy =0.045m, Qy =0.025m3/s, and outlet water depths=0.19m. The computed upstream water
depth at steady state is 0.228m, gives an input power ratio Wx/(Wx +Wy) of 0.54. In this case a
hydraulic jump is formed at the inlet y-channel and the flow becomes subcritical in the x-channel
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Figure 18. Water depth profiles along both channels of the channel crossing.

(Figure 18). Compared with the results in Section 5, the present result gives a lower value of
Qxo/(Qxo+Qyo)∼0.48. This is because the high input power at the y-channel directs more flow
towards the downstream y-channel.

The computed results above show that the numerical model determines accurately the flow
distribution in channel crossings. For practical application, the 3D model can be integrated with
a 1D model such that the 3D model is used in channel junctions and the 1D model is used in
channel reaches.

8. CONCLUSIONS

A 3D RANS model has been implemented to investigate the flow characteristics in cross junctions.
The model is first verified against the detail velocity and water level measurements of a T -junction
flow and the discharge measurements in a subcritical cross junction flow. For the cross junction
flow, the contraction coefficient derived from the recirculation bubble size is dependent on the
input flow ratio and the difference between the two outlet weir heights. A dividing streamline exists
and its depth-averaged width ratio increases linearly with the ratio of the discharges at the two
inlets. For supercritical inlet flows in a cross junction, the numerical model reproduces the hydraulic
jump and hydraulic drop phenomena and predict accurately the relationship between the input
power ratio and the outflow discharge ratio of the channel crossing. The model can be integrated
with a 1D model to determine more accurately the flow distribution in open channel networks.
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